miércoles, 27 de abril de 2011

Las computadoras solamente entienden números. El código ASCII es una representación numérica de un carácter como ‘a’ o ‘@’.



Como otros códigos de formato de representación de caracteres, el ASCII es un método para una correspondencia entre cadenas de bits y una serie de símbolos (alfanuméricos y otros), permitiendo de esta forma la comunicación entre dispositivos digitales así como su procesado y almacenamiento. El código de caracteres ASCII —o una extensión compatible (ver más abajo)— se usa casi en todos los ordenadores, especialmente con ordenadores personales y estaciones de trabajo. El nombre más apropiado para este código de caracteres es "US-ASCII".

ASCII es, en sentido estricto, un código de siete bits, lo que significa que usa cadenas de bits representables con siete dígitos binarios (que van de 0 a 127 en base decimal) para representar información de caracteres. En el momento en el que se introdujo el código ASCII muchos ordenadores trabajaban con grupos de ocho bits (bytes u octetos), como la unidad mínima de información; donde el octavo bit se usaba habitualmente como bit de paridad con funciones de control de errores en líneas de comunicación u otras funciones específicas del dispositivo.

Binario Dec Hex Representación
0010 0000 32 20 espacio ( )
0010 0001 33 21 !
0010 0010 34 22 "
0010 0011 35 23 #
0010 0100 36 24 $
0010 0101 37 25 %
0010 0110 38 26 &
0010 0111 39 27 '
0010 1000 40 28 (
0010 1001 41 29 )
0010 1010 42 2A *
0010 1011 43 2B +
0010 1100 44 2C ,
0010 1101 45 2D -
0010 1110 46 2E .
0010 1111 47 2F /
0011 0000 48 30 0
0011 0001 49 31 1
0011 0010 50 32 2
0011 0011 51 33 3
0011 0100 52 34 4
0011 0101 53 35 5
0011 0110 54 36 6
0011 0111 55 37 7
0011 1000 56 38 8
0011 1001 57 39 9
0011 1010 58 3A :
0011 1011 59 3B ;
0011 1100 60 3C <
0011 1101 61 3D =
0011 1110 62 3E >
0011 1111 63 3F ?
Binario Dec Hex Representación
0100 0000 64 40 @
0100 0001 65 41 A
0100 0010 66 42 B
0100 0011 67 43 C
0100 0100 68 44 D
0100 0101 69 45 E
0100 0110 70 46 F
0100 0111 71 47 G
0100 1000 72 48 H
0100 1001 73 49 I
0100 1010 74 4A J
0100 1011 75 4B K
0100 1100 76 4C L
0100 1101 77 4D M
0100 1110 78 4E N
0100 1111 79 4F O
0101 0000 80 50 P
0101 0001 81 51 Q
0101 0010 82 52 R
0101 0011 83 53 S
0101 0100 84 54 T
0101 0101 85 55 U
0101 0110 86 56 V
0101 0111 87 57 W
0101 1000 88 58 X
0101 1001 89 59 Y
0101 1010 90 5A Z
0101 1011 91 5B [
0101 1100 92 5C \
0101 1101 93 5D ]
0101 1110 94 5E ^
0101 1111 95 5F _
Binario Dec Hex Representación
0110 0000 96 60 `
0110 0001 97 61 a
0110 0010 98 62 b
0110 0011 99 63 c
0110 0100 100 64 d
0110 0101 101 65 e
0110 0110 102 66 f
0110 0111 103 67 g
0110 1000 104 68 h
0110 1001 105 69 i
0110 1010 106 6A j
0110 1011 107 6B k
0110 1100 108 6C l
0110 1101 109 6D m
0110 1110 110 6E n
0110 1111 111 6F o
0111 0000 112 70 p
0111 0001 113 71 q
0111 0010 114 72 r
0111 0011 115 73 s
0111 0100 116 74 t
0111 0101 117 75 u
0111 0110 118 76 v
0111 0111 119 77 w
0111 1000 120 78 x
0111 1001 121 79 y
0111 1010 122 7A z
0111 1011 123 7B {
0111 1100 124 7C |
0111 1101 125 7D }
0111 1110 126 7E ~


 La siguiente imagen , es la representacion de lo que veria en el osciloscopio al medir la señal emitida de la letra "A" en el hyperterminal.


 Para calcular el tiempo del bit, podemos usamos la siguiente formula:


                     Tbit =  1/ 9600bps = 104µs

No hay comentarios:

Publicar un comentario